
Heterogeneous Database Integration Using Agent-
Oriented Information Systems*

J. Todd McDonald

Department of Electrical and
Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB OH 45433

Michael L. Talbert
Department of Electrical and

Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB OH 45433

Scott A. DeLoach
Department of Electrical and

Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB OH 45433

* The views expressed in this article are those of the authors and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the U.S. Government.

Abstract: The Department of Defense (DOD) has
an extensive family of models used to simulate the
mission level interaction of weapon systems.
Interoperability and reuse of the underlying data
files used to create simulation scenarios pose great
challenges in this regard. Unlike traditional data
integration methods common to federated database
research, the emerging field of agent-oriented
information systems (AOIS) views data as the
central focus of an application while also providing
an overall architectural framework for application
development. We develop an AOIS solution
relevant to this problem domain by combining
object-oriented data modeling (OMT), a persistent
programming language using a commercial object-
oriented database (ObjectStore), and an agent-
oriented analysis and design methodology (MaSE).
Requirements from a contractor-led effort at the Air
Force Research Laboratory (AFRL) known as
CERTCORT are the basis for analysis and design of
our system. We implement prototypical
information-layer applications to conceptually
demonstrate the reusability and integration of
scenarios across simulation models.

Keywords: AOIS, Agents, Modeling and
Simulations, Heterogeneous Database
Integration

1. Introduction

The Air Force Research Laboratory is directing
an effort to provide a collaborative computing
environment to support simulation scenario
reuse and integration. Player-oriented military
simulation models include among others the
Extended Air Defense Simulation Model
(EADSIM), the Suppressor Composite Mission
Simulation System (SUPPRESSOR), the Joint

Interim Mission Model (JIMM), and the
Simulated Warfare Environment Generator
(SWEG). The requirements of this
collaborative environment, known as
CERTCORT (Concurrent Engineering for Real
Time databases CORrelation Tool), and its
heterogeneous integration problem are
represented pictorially in Figure 1.

Figure 1: Heterogeneous Database Problem Domain

1.1. Problem Domain

There are two primary goals for integration
within this realm. The first concerns the
mapping of real world data as conveyed
through authoritative data sources (left side of
Figure 1) into the language and syntax
structures that are specific to a given type of
model (right side of Figure 1). Figure 2
pictorially represents a Multi-Spectral Force
Database file (subordination relationships
among units) and its correlation into both a
SUPPRESSOR and EADSIM scenario
instance.

MSFD

DTED

EWIR

CONOPS

CIB

DFAD

DOCUMENTS

C
E
R
T
C
O
R
T

SUPPRESSOR

JIMM/SWEG

MOSAIC

EADSIM

CEESIM

RISS

DEES

Authoritative
Data

Sources Simulation
Model
Types

Integrate any
Scenario Input Source File
(provide traceability)

Into Any
Simulation

Model

Figure 2: Authoritative-Source-to-Model Traceability

The second form of integration deals with

integration across simulation models
themselves, where entities described in one
model-specific grammar (e.g., SUPPRESSOR)
are desired for reuse in another model-specific
grammar (such as JIMM). Translation of data
items from one simulation grammar to another
is required in this form of integration. The
grammars used to describe operational
scenarios vary in their ability to capture
concepts such as terrain, communication,
electronic warfare, and lethal engagements.

Figure 3 illustrates how typical integration
of scenarios from one type of model to another
deals strictly with "translating" or "mapping"
the syntax structures of one into their
equivalent meaning in another. This syntactic
level of integration, however, does not always
form the ideal basis of integration because of
the diversity and complexity of the languages
that are specific to a simulation model.

Figure 3: Model-to-Model Integration

Current solutions in the realm of scenario
reuse focus on schema integration techniques
from the perspective of a traditional
heterogeneous federated database system. We
approach the integration problem from more
than the syntactic level alone and describe an
approach to translation based upon common
semantic objects found from information
discovery techniques. Figure 3 also shows
how “semantic” objects that are closer to real-
world abstractions are a means of reuse.

The process of mapping authoritative
sources into scenario files (Figure 2) and
reusing existing scenarios in different models
(Figure 3) is tedious and done with minimal
software support. No facility for collaborative
assistance from other domain specialists exists
as well. Our research explores the benefits of
using agent-oriented information systems
(AOIS) and implementing agent technology to
achieve sharing and reuse in this
heterogeneous data environment. We develop
architecture to support integration of both
authoritative data to a family of simulation
models (Figure 2) and a model-to-model
integration (Figure 3) that supports an
automated approach to scenario construction.

1.2. Object-Oriented Foundations

Scenario database files are currently flat-file
structures that follow pre-defined grammars of
a given model. Authoritative sources like the
MSFD and EWIR (Figure 1) also exist in flat-
file or relational database form. We use
traditional Object Modeling Technique (OMT)
analysis and design methods to define
grammar rules and file structures in an
equivalent object-based class hierarchy. Our
structural models faithfully capture the content
of scenario files and authoritative data sources.
Because of the legacy nature of the simulation
engines themselves, scenario data files will
continue to be the method of initializing and
executing scenarios for a given model. We thus
use object representations of both scenario files
and authoritative sources as the basis of
information interchange and storage.

Objects offer an ideal form of
encapsulation for the underlying data content
of scenarios and allow a natural form of

SUPPRESSOR
Scenario

Database Files

MSFD

SUPPRESSOR
Scenario

EADSIM
Scenario

Database Files

EADSIM
Scenario

MSFD
Representation

Syntactic
Object
Model

Semantic
Representation

Model X
(SUPPRESSOR)

Model Y
(SWEG)

Syntactic
Object
Model

Share
Semantic

Objects

Via Schema
Integration
Technique

persistence when object-oriented databases
(OODBMS) are introduced into the
architecture. Figure 4 illustrates the concept of
encapsulating scenario database files by an
object structure derived from an OMT analysis
and design of the grammar for a simulation
such as SUPPRESSOR. This "syntax" model
becomes the ideal unit of storage because it
can also be used to readily reproduce the
underlying flat-file structure (which is required
as input to execute an actual simulation).
Semantic object models can also be derived
from this structure that introduce real world
abstractions and further provide the basis for
reuse and integration.

Figure 4: Object Encapsulation of Scenario Files

The object-oriented syntax models for
both scenario database files and authoritative data
sources can serve various purposes in our
architecture. Once in an objectified form,
methods can be derived for information
visualization purposes, text translation (XML,
HTML), persistent object creation, or appropriate
conversion to other object structures. Figure 5
illustrates this concept.

The strength of an OODBMS in this
problem domain is that persistence can be
achieved for scenario representations without
having to change or translate them into another
data format. Scenarios stored in an object-
oriented database already exist in the common

data model that is necessary for reuse and
integration. Scenario and authoritative data
representation are accomplished by parsing the
scenario files dynamically into an appropriate
object instance of that simulation’s class structure
or by retrieving previously created scenarios and
authoritative sources that are persistent objects in
an OODBMS. Persistent stores are also available
for transaction processing, query capability, and
information retrieval applications that are
separate from our agent-based architecture.

Figure 5: Translation Possibilities for Scenario Object

A promising approach to solve the

integration problem of heterogeneous data
sources, and the thrust of our research, is to
provide access to a possibly large number of
information agents that dynamically or
persistently represent scenarios of different
models. Scenarios can exist in this environment
in both native file structure and OODBMS
formats while an information agent is used to
provide the mapping of this representation to an
information brokering system. For relational data
sources, an active information agent can perform
necessary data translation steps into the common
data model (in our case, object). Figure 6
illustrates the concept of representing OODBMS
stores and native file formats with information
agents. This research demonstrates both of these
capabilities, and the definition and use of agents
in our architecture are discussed next.

PLAYERS
 bomber
TACTICS
 bomber_tactics
ELEMENTS
 bomber_ele
SUSCEPTIBILITIES
 bomber_sig
MOVERS
 bomber_body
SENSOR-RECEIVERS
 bomber_radar_rx
..

UAN

TDB

SDB

EDB

Syntactic
Object
Model

Semantic
Object
Model

Definition of “BOMBER”
according to the

SUPPRESSSOR grammar

“Closer To”
Real World

Abstractions

SUPPRESSOR
Grammar

Abstractions
SUPPRESSOR

Scenario
Object

SWEG
Scenario

Files
SWEG

Scenario
Object

EADSIM
Scenario
Object

Persistent
SUPPRESSOR

Object
(OODBMS)

SUPPRESSOR
XML

Representation

SUPPRESSOR
Scenario

Files
(Text)

Java SWING
Tree Representation

Figure 6: Information Agent Data Representation

2. AOIS Design

To narrow the discussion and scope of what we
define an "agent" to be, we realize that agents are
conceptualized or implemented by many in the
AI field using concepts reserved solely for
humans. From this perspective, agents can be
characterized in terms of knowledge, belief,
intention, and obligation. Other advocates
require stricter properties such as mobility,
veracity, mobility, and rationality. We view
agents both in terms of a programming paradigm
that offers higher level abstractions above objects
and as autonomous entities that have active
properties. Multi-agent systems, in particular,
require explicit definition of communication
(known as conversations) and the specification of
message elements between agents that achieve
common goals. As such, agents can be defined
as objects with goals and a common
communication language.

The agent concept is seen by some also
as a natural and appropriate way to deal with
information complexity. A new paradigm has
emerged that looks first at the information
systems level of a problem and addresses how it
relates not only to objects, but to the idea of
autonomous agents as well. The term agent-
oriented information systems (AOIS) describes
the adaptation of agent-oriented principles to the
entire information life cycle design process.
Information agents as such can be viewed as
entities that represent their information source as
knowledge and beliefs and then offers
capabilities and commitments about those beliefs

to other interested parties. In this sense,
information agents serve the role of an
information "provider" in the context of an
AOIS.

Our architecture reflects the reasoning
ability and "active" nature these providers need to
have in order to respond to requests for
information. Cooperative information agents are
based on the traditional notion of information
retrieval (IR) systems where agents search with
other agents for information and respond to
queries in a plan-based manner. Our architecture
allows IR capabilities to be added in the future
but initially deals solely with the replacement of
traditional data storage services with a collection
of information agents linked by an information
brokering system. Figure 7 illustrates the
traditional notion of one type of middle-agent
system known as a matchmaker. We use this as a
basis for information registration and exchange in
our system.

Figure 7: Matchmaker Brokering Scheme

In order to introduce agent-oriented
principles into our problem domain, we require
two key building blocks. First, an agent-oriented
systems analysis and design technique is used to
break the problem area down from requirements
to design on into its implementation as an agent
hierarchy. This technique may be similar to
normal object-oriented design methodologies, but
it is definitively agent-centric and not object-
centric. Second, a multi-agent development
environment is chosen to implement and build
the communication requirements of agents
specified by our agent-oriented methodology.
The methodology used to transform our domain
requirements into agent architecture is discussed
next.

TDB
SDB

IDB
LDB

TDB
SDB

EDB
UAN

Information
Agents

OODBMS

SW EG
Scenario

Data Files

SUPPRESSOR
Scenario Data

Files

SUPPRESSOR
Scenario

SUPPRESSOR
Scenario

SWA
MSFD

Objects
already created

and stored
persistently

Agents
“represent”

object
instances
created by

parsing data
files

2.1. Multi-agent Systems Engineering (MaSE)

Systems engineering approach to software
development follows an orderly and logical
design process that successfully captures system
requirements and transforms them into real world
software and hardware components. The process
for developing a multi-agent system is no
different. The key difference is that agent
concepts and constructs are used to synthesize
the problem domain of a system in addition to
normal object-oriented interactions. We use
MaSE as a generalized methodology similar to
Object Oriented Analysis and Design (OOAD) to
capture the agent-oriented aspects of our domain.
The major phases of this methodology cascade as
follows: 1) domain level design, 2) agent-level
design, 3) component design, and 4) system
design.

An agent-oriented analysis of a problem
using MaSE specifically seeks to 1) map
requirements to implementation, 2) develop a
methodology for determining what agents are
needed in a system, and 3) develop a
methodology for designing conversations to
support the collaborative goals of a group of
agents. Though MaSE does not assist in
determining whether a problem domain is best
represented by agents, it is an appropriate starting
place when agent orientation has been chosen as
the desired abstraction.

Regardless of the implications of whether
machines can “think” or act “rationally”, agents
can be seen as another way of abstracting a
problem into more definable pieces. We find
agents particularly helpful in this problem
domain as an abstraction tool because of the
complexity of involved with integrating such a
large number of data sources and finding a
common architecture for reuse among such a
large number of diverse simulation models.

The MaSE methodology itself flows
from requirements analysis and derives system
level goals. These goals are decomposed into
subgoals that can be conjuncted or disjuncted that
reflect a higher level of control, or goals that are
subsumed by other goals. These decomposed
goals can then be converted into roles that are
more familiar to UML notation. Roles can be
combined under one agent and agents that

interact with humans and system resources may
also be defined.

For purposes of our research, and to
focus the scope of our implementation, we chose
one particular simulation model (SUPPRESSOR
from Figure 1) and one particular authoritative
data source (MSFD from Figure 1) as a basis for
our requirements. Figure 8 shows the results of
applying MaSE to our problem domain and the
agent types that are directly traceable to our
decomposed requirements. Though they are a
small subset of the entire CERTCORT data
domain, these requirements represent both the
collaborative nature and automated generation
facilities desired in the final system.

Figure 8: Agent Derivation from Roles

Once appropriate agent types have been

defined under MaSE, traditional use cases can be
defined according to normal UML notation for
each goal that an agent is responsible for.
Collaborative goals require the interaction of
multiple agents and thus more complex
interactions. A message passing sequence
between two or more agents requires at least the
definition of one conversation type. Sequence
and collaboration diagrams can be used to define
collaborative scenarios.

Conversations are designed using the
scenarios as the minimum messages that must be
passed. State based sequence diagrams (not
shown) are derived directly from scenarios and
define all required states, including failure, for
each agent type involved in a conversation.

A final product of MaSE includes an
agent hierarchy that fulfills system goals and also
defines all necessary conversations between
agent types. Figure 9 illustrates the three primary
agent types that were defined in our domain as

1.1.1/1.2.1
Answer information
request

1.1.3/1.2.3
Notify requestors of
deregistration

1.1.2/1.2.1
Advertise information
service (registration)

1.1.4/1.1.5/
1.2.4/1.2.5/
3.1
Define object
representation
of data source

2.2/2.3
Make an information
request about a
scenario or data
source

3.2/3.1
Assist a user in
building a
scenario

3.3
Assist two
analysts work
concurrently on a
scenario

2.4
Perform
semantic
translation of
information

(Virtual 1.1.2/1.2.2)
Offer registration
services and recieve
advertisement requests

InformationRequestor

InformationProvider
InformationBroker

CollaborationAssistant

ScenarioBuilderAssistantAnalyst

SemanticBroker

part of the "information layer" and the
conversation types between them.

Figure 9: Agent Types and Conversation Hierarchy

Agents are a powerful abstraction tool.

By extension, we use agent types to form "layers"
representing increased system functionality and
requirements implementation. Our research
focused on agents that are suited at "registering"
information providers (entire scenarios or
authoritative data sources) and also "registering"
applications that request data and information
from those providers. Based on our matchmaker
scheme, an information "broker" is the middle-
agent responsible for matching requestors with
providers. Figure 10 illustrates both this
"information" layer along with other agent layers
that will support collaboration among more than
one analyst developing scenarios and that will
introduce intelligent user interfaces to provide
expert knowledge in creating scenarios

Figure 10: CERTCORT Agent Layers

2.2. Multi-Agent Development Framework

To implement our agent design, a multi-agent
development framework named agentMom was
chosen. This environment defines basic classes
for agents, conversations, and messages. Our
research demonstration was written in Java (JDK
1.1.6) and utilized serialized objects as the
primary means of information exchange between
agent types. Figure 11 illustrates the
communication architecture between class types
defined by the agentMom framework.

Figure 11: agentMom Communication Architecture

Figure 12 illustrates the distributed,
cross-platform nature of the framework along
with representative applications functioning in
different “roles” within the information layer of
our agent architecture.

Figure 12: Application Demonstration

We implement an architecture that allows

persistent objects to be both created and retrieved
from an ObjectStore object-oriented database

MASC CERTCORT
Broker GUI

Port
3000

Computer A
(UNIX)

Computer B
(NT)

Computer C
(UNIX)

MASC SUPPRESSOR
Data Gateway

Port
4100

Port
4101

MASC SUPPRESSOR
Data Gateway

TDB1
TDB2
TDB3
SDB
UAN

a SUPPRESSOR Scenario
(SWA97)

TDB
SDB
UAN

a SUPPRESSOR Scenario
(SWA2000)

Port
4200

MASC MSFD
Data Gateway

SWA97
MSFD

an MSFD
data source file

Port
4201

A persistently stored MSFD
(SWA2000 MSFD)

Computer D
(NT)

MASC SUPPRESSOR
SimBuilder

Port
5100

Analyst/User

Associated
with a

dedicated
port

InformationProvid

InformationBroke

+client

+server

Register

+client

+server

Unregister

InformationRequest

+client+server

RegisterForInf

+requestor

+provide

RequestInfo

+client
+server

ReturnInfoSourc

+client+server Register

+client+server Unregister

NotifyOfDeregistratio
+client+server

Information
Broker

(Server)

Information
Requestor

(Client)

Information
Provider
(Client)

Inform ation Layer

Collaboration Layer

Assistant Layer

Semantic
Broker

(Server)

Collaboration
Assistant

Scenario
Builder

Assistant

management system (OODBMS). Persistence in
regards to this framework is seen as orthogonal to
the agent-oriented information system, yet
support is provided by the framework itself for
OODBMS access.

3. Discussion

Agents provide unique benefits to information
integration in this context above those provided
by traditional heterogeneous database
architectures. Semantic models in our domain
require post-processing of instance data; this is
best supported in the context of an “active” data
source that information agents can provide.
Federated databases tend to be “data” centric and
not “application” centric, however multi-agent
systems provide a life cycle approach that can
provide direct traceability of user requirements
into system components and agent classes.

AOIS technology keeps the “focus” of
system development on the data without binding
to a particular data storage mechanism. Agents
also provide the ability to abstract away the
underlying data representation of information
sources within information systems. Agent based
systems can be expanded to provide greater
functionality without drastic architectural
changes. Intelligent interfaces and the ability to
achieve coordinated plan-based goals are not
possible from a database-centered approach to
systems development. Scenario model integration
and construction has certain information retrieval
aspects that are naturally suited to underlying
information agent architecture. AOIS has
implementation in terms of both information-
gathering systems and the encapsulation of
traditional data sources normally part of a
database management system.

4. References

1. Biller H. and E. Neuhold. “Semantics of

Data Models: Database Semantics.” in
Readings In Artificial Intelligence &
Databases. Ed. Mylopoulos, J. and Brodie,
M. San Mateo CA: Morgan Kaufman
Publishers, 1989 [received 3 Sep 1976].

2. Hammer, J. and D. McLeod. “An approach
to resolving semantic heterogeneity in a

federation of autonomous, heterogeneous
database systems.” International Journal of
Intelligent and Cooperative Information
Systems 2(1):51-83, March 1993.

3. Decker, K., M. Williamson and K. Sycara.
“Matchmaking and Brokering.” Technical
report, The Robotics Institute, Carnegie
Mellon University (USA), Pittsburgh, May
16, 1996.

4. Wooldridge, M. and N. Jennings. “Intelligent
Agents: Theory and Practice.”, Knowledge
Engineering Review, 10(2): 115-152, 1995.

5. Wagner, G. “Toward Agent-Oriented
Information Systems.” Technical report,
Institute for Information, University of
Leipzig, March 1999.

6. Dignum, F. “Are information agents just an
extension of information systems or a new
paradigm?” Workshop on Agent Oriented
Information Systems at CAiSE 99, 1999.

7. Petit, M., P. Heymans and P. Schobbens.
“Agents as a Key Concept for Information
Systems Requirements Engineering.”,
Position paper, Agent Oriented Information
Systems Workshop at CAiSE 99, 1999.

8. International Bi-Conference Workshop on
Agent-Oriented Information Systems, 1999.
http://www.aois.org.

9. DeLoach, Scott A. “Multiagent Systems
Engineering: A Methodology and Language
for Designing Agent Systems.” Proceedings
of a Workshop on Agent-Oriented
Information Systems (AOIS’99). 45-57.
Seattle, WA. May 1, 1999.

10. DeLoach, Scott A. “Using agentMom.”
Unpublished document. Air Force Institute of
Technology (AU), Wright-Patterson AFB,
OH. October 1999.

